BB CAMBRIDGE CAMBRIDGE CENTRE
o s C ARES FOR ADVANCED RESEARCH AND

EDUCATION IN SINGAPORE LTD.
Pharma Innovation

Programme
Singapore (PIPS)

A*STAR

New Processes Development in Pharmaceutical
R&D and Manufacture

Alexei Lapkin

CARES 10-year anniversary
1/12/2023

. Sustainable
@ Reaction .7 UNIVERSITY OF
Engineering 4P CAMBRIDGE



Generic Challenges
of Process Development in Pharma

o Synthesis of an active pharmaceutical ingredient (API) is
typically a multi-step sequence of synthesis and purification
tasks.

o There are different options of how to build the required
molecule (different synthetic paths).

o There is a large number of combinations of possible reagents
and reaction conditions.

An example of possible chemical routes from limonene (a bio-
waste based starting molecule) to paracetamol. In total there are
458 routes involving 132 chemical species. Each reaction (arrow)
will have a set of optimal reaction conditions and many of the
reactions must be followed by product separation (not shown).




Generic Challenges
of Process Development in Pharma

o How to efficiently develop a single step
(reaction or separation)?

o How to efficiently design the complete sequence of steps?

Do we know all the unknowns about our reaction system?

Could we predict / calculate reaction outcome (what is being formed) and reaction
conditions?

s it possible to generate required data using minimum time and quantities of
reactants/reagents?

Can we calculate or efficiently measure all required physical properties to evaluate
separation strategy computationally?

How to efficiently enumerate all possible options for a multi-step synthesis?
What is the most effective way of optimizing a multi-step synthesis?




PIPS projects hosted by CARES

Pharma Innovation Programme Singapore

The Pharma Innovation Programme Singapore (PIPS) is an
industry-led platform which aims to synergistically and
strategically bring together public sector research
capabilities and domain expertise of the pharmaceutical
industry to enhance the productivity and operational
efficiency within Singapore’s pharmaceutical sector
through leveraging novel manufacturing technologies and
data analytics.

CARES PIPS-1 Projects (completed in 2022/2023)

C4: Development of Multi-Step Processes in Pharma
C12: Data-2-Knowledge in the Digital Manufacture of
Pharmaceuticals

Pfizer-specific:

CARES PIPS-2 Projects (started in 2023)

T1: From Digital Twins to Real Time Al-supported Plant
Operations

T2: Automated Evaluation of Environmental Impacts of
Pharma Manufacturing Processes



Efficient Development of a Single Reaction Step

Li-Halogen exchange is a frequently used synthetic strategy despite well-known practical difficulties:

* very high exotherm and reaction rate (requires cryogenic conditions);
* |ow solubilities — solids formation:;

* high sensitivity to traces of water and oxygen;

* |ow tolerance to functional groups — formation of impurities.
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Could we propose a robust procedure based on Li-halogen exchange and used at scale?

Dr Dogancan Karan
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Efficient Development of a Single Reaction Step

oo oo eeore

CRB004 CRB010

-

CRBO11 Main Impurity

Simplified reaction — focus on the most complex step of Li-halogen exchange.

Drs Dogancan Karan & Guoying Chen



Flow Chemistry for ‘Difficult’ Synthetic Procedures

0.1 M Aryl Bromide
(CRB0O04) in THF

2 M n-BuLi
in cyclohexane

Vapourtech
Static Mixer

Cooling Loop

Reaction Zone Sample Collection

0.8mm ID
V=06mL 1.65m / \ 1.5m PFA

16 cm, 0.8 mm ID PFA LTF HTM-ST +
V=80puL 4¢m 0.8mm ID PFA
V=80puL

Anhydrous
THF

Drs Dogancan Karan & Guoying Chen

Benefits of flow technology:

Many options for mixing arrangement in flow.
Excellent temperature control — high exchange area.
Enclosed system for control of environment.

Low hazard — small reaction volumes.

High space-time-yield: no need for scale-up.

I

~ Acrylic Box

Polar Bear Flow Reactor



Engineering d GOOd Exper‘iment Solid = PFA (0.8 mm ID, 50 cm L), Fluid = THF

Wall T =243K (t=0)

o CFD simulations to ensure that cooling tube is long enough to Fluid T=298K (t=0) U (m/s)
reach the desired temperature.

o Scaled down, axisymmetric 2D geometry to save

: . Rotation Axis
computational time.

o Highest flow speed (worst case scenario) is simulated.

pu-VYu= V-[-pI+ K|+ F pV-u=0 NSE for velocity field
pCou-VT+ V-q=0Q+Qrea 9= —KVT Heattransport at solid side

- | " n-BULi/THF cooling line | pCou-VT+ V-q=Q+Qp+ Qua q= —KVT Heat transport at liquid side
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3-3.2 mtube length is enough to reach target temperature



Engineering a Good Experiment

o Sequence of events to collect a data point causes dispersion in multiple locations in the system

o Steady state time needs to be estimated from the theory of Residence Time Distribution (RTD)

o Dispersion regimes are identified from Ud;/Dyg vs L/d; plot

Steady State (s)
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Intermediate Regime & <
— Taylor Dispersion c
SiEHEA T Rl § Tube - Convection 3 Intermediate &
n-Buli +THF ; S : 4
Chip - Plug Flow Taylor Dispersion
Reaction Zone Sample Collection
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Plug Flow
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o Taylor dispersion model is used for n-BuLi+THF and sample collection part

o Plug flow is assumed in reaction zone due to short T
o Predicted steady state with dispersion model is 50 — 100 % higher than plug flow

steady state time for 15 randomly generated samples
o Fluctuation in steady state samples (avg of 10 samples)

Sample I -47.3 (£ 3.8) % Yield, 19.5 (£ 1.1) % Impurity
Sample I —=95.5 (£ 0.5) % Yield, 4.7 (£ 0.5) % Impurity



Reaction Development & Optimisation using Automated Experiments

Evolutionary Feedback
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An open-source solution

flab

https://pypi.org/project/flab/

About

A coding framework to simplify automation
» Providing a robust architecture and tools for implementing routines

« Open-source Python
« Zero capital cost, and native migration of many packages for ML & data-science

« Designed for experimentalists with novice coding experience
« Providing a gradual transition into coding expertise

* Agile principles

« Making modification and sharing a feature




Automation Workflow m

1. Choose the devices you need, and load them into the automation
framework

2. Program a task (or multiple tasks) in python with high-level commands

* |.e. “ devicel.start()” or
“experiment.start(parameters)”

3. Construct Al “loops”
4. Run and stop task(s) as you need during an experiment

5. Increase in complexity as necessary

Dr Nicholas Jose; CEO of Accelerated Materials Ltd



Generating Process Knowledge through ML-driven DoE

Multi-objective Bayesian Optimization: Yield (max) vs Impurity (min) as competing objectives
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o TSEMO designed 34 experiments to establish the pareto plot
o Optimum operation range for max. yield
o T =0.185-0.230s, T =-(30-23) °C, n-BuLi =1.03 -1.08 Eq.

Reactor setup = 16 cm, 0.8mm ID PFA tubing
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Top 3 best conditions for max yield

T (S) T (°C) n-BuLi (Eq) Yield (%) Imp (%)
0.191 -23.41 1.079 94.1 4.1
0.23 -30 1.047 93.3 3.4
0.185 -26 1.037 93.1 2.5




Generating Process Knowledge through ML-driven DoE

Multi-objective Bayesian Optimization: Yield (max) vs Impurity (min) as competing objectives
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o TSEMO designed 28 experiments to establish the pareto plot
o Optimum operation range for max. yield

o T =0.185-0.266s, T = -(30-23) °C, n-BuLi=1.0—1.005 Eq.

Reactor setup = LTF HTM-ST + 4 cm, 0.8 mm ID PFA tubing
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Top 3 best conditions for max yield
7 (S) T (°C) n-BuLi (Eq) Yield (%) Imp (%)
0.24 -28.6 1.003 95.7 3.6
0.266 -23.5 1.005 95.6 3.3
0.19 -23.4 1.06 93.9 5.57




Tubular reactor vs Microfluidic chip reactor




Tubular reactor vs Microfluidic chip reactor

Comparison between tubular system and chip system

Best performing condition of different optimization campaigns

7
@ Tube + 12 Training
Optimization 7(s) T(°C) n-BuLi(Eq) VYield (%) Imp (%) 6L V Tube + 3 Training
[ Chip + 12 Training
Tube+12 Training 0.191 -23.41 1.079 94.1 4.1 '
Tube+3 Training  0.185  -16.3 1.065 93.8 4.8 5r v
Chip+12 Training  0.24  -28.6 1.003 95.7 3.6 = Ak ®
En ]
o Chip system can achieve higher yield and lower impurity due to better mixing = 3 ...
2 gl
o Tubular system requires more n-Buli to achieve the max yield £ O
2r -
7(s) T(C) n-BuLi(Eq) Yield (%) Imp (%) m
1= v ﬁ
Tube 0185  -21 1.1 91.9 8 Ve e
Chip 0.19 -23.4 1.06 93.9 5.57 0 ‘ I I I
60 70 80 90 100
1 0,
o Tubular system requires more n-Buli to compromise the yield for impurity Yield (%)

Consistent Pareto efficient points for two optimization campaigns with tubular system

Slightly better pareto efficient points for chip system due to improve mixing



Efficient data generation in an automated laboratory

C4 PIPS-1 Project: Development of Multi-Step Processes in Pharma

Project Objectives

* To develop a generic methodology for accelerated development of multi-step reaction-separation processes
in the manufacture of pharmaceuticals.

* To demonstrate the methodology on specific industry-defined case studies.

e To identify critical technological challenges for implementation.

Drs Mohammed Jeraal, Simon Sung, Magda Barecka



Industrial Case Study

Objective
Weightings

Step 1
o 0O
OH
@ o Base (BASE) /JL\TJL\
+ )\[)J\ —_— o
Cl Solvent; (SOLV,) \©\
t CN
CN 2 T
1 P1
1
- [BaseH]CI
Entry Continuous variables Discrete variables
1 Reaction temperature, T; Type of BASE
2 Reaction time, Type of SOLV,
3 Equivalents of 6
4 Equivalents of BASE
Step 2
o O HO
\f—\N*N
) H Acid (ACID) )
*OHNTY O T >
3 Solvent; (SOLV,) 0
P1 T CN
-2H,0 P2
Entry Continuous variables Discrete variables
1 Reaction temperature, T, Type of ACID
2 Reaction time, f, Type of SOLV,
3 Equivalents of 7
4 Equivalents of ACID

SOLV, Options

. Methanol

. Chloroform

. 1,3-Dimethyl-2-imidazolidinone
. Tetrahydrofuran

. N, N'-Dimethylpropyleneurea

BASE Options

. 1,8-Diazabicycloundec-7-ene

. 1,5-Diazabicyclo[4.3.0]non-5-ene
. N-Methylmorpholine

. N,N-Diisopropylethylamine

. Triethylamine

. 2,6-Lutidine

. Pyridine

ACID Options
. Acetic Acid

. Cyclobutanecarboxylic acid
. Cyclopentanecarboxylic acid

. Difluoroacetic acid
. Formic acid

. Isobutyric acid

. Isovaleric acid

. Lactic acid

. Pentanoic acid

. Propionic acid



Machine-learning based design of experiments: TSEMO

Optimisation of STY (g/L/h) and E-Factor (Reaction Mass/Product Mass)
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Results of Optimisation Experiments
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Drs Mohammed Jeraal, Simon Sung, Magda Barecka

0.2

e Optimisation space same as original

* Same training experiments as
original optimisation

» System performed 74 optimisation
experiments.

M.l. Jeraal, S. Sung, A.A. Lapkin, A Machine
Learning-Enabled Autonomous Flow
Chemistry Platform for Process Optimization
of Multiple Reaction Metrics. Chemistry—
Methods, 2 (2021) 71-77
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User interface for working with automated experiments
Single-Step Multi-Objective Optimisation Station

Setup Interface with Flow Chemistry Equipment Select Reaction Scale q

n/a nfa

i g
[ Launch Flow Commander ] Select the limiting quantity from Pump A for each run (ml) II@

Click blue arrow icon to ensure all components are "online” before connecting.

Connected to local instance of Flow Commander Step 5: Select Optimisation Targets Experimental Conditions: Current Last Reaction

Select the target functions for the multi-objective optimisation from the list below.

Define Optimisation Space Target Objective 1: | [Select] v | Target Objective 2: | [Select] v I

Select and edit optimistion targets. [Please delete any unnecessary variables]. If prompted, enter the relevant chemical properties upon confirmation.
[ Select Optimisation Variables J [ Confirm Objective Functions ]
Lower Limit Upper Limit
0 | I 0 Train Optimisation Model
0 | I 0 Enter existing training data into Excel file and save below. Optimal Last Reaction

I |
| |
| 0 | | 0 I [ Generate Excel File ] [ Save External Training Data ]
| |
| |

0 | | 0 Enter no. of experiments per variable:

0 | | 0 [ Generate Auto Experiments ]
( Confirm Limits J -

Start Training
Specify Chemical Inputs [ Generate Graph of Optimisation Experiments
Specify the required properties of chemical species in the system. Machine Learning Optimisation
[ Reactant Solutions J
Start Optimisation Pause System Running
[ Analytical Parameters ]
Setup Optimisation Setup. Please proceed through the steps to commence optimisation. Last Status: 10-Feb-2020 10:38:11

Drs Mohammed Jeraal, Simon Sung, Magda Barecka



A chemical robot = an automated Vapourtec flow reactor + Liquid Handler + HPLC

Components:

= Flow chemistry experiment — precise control of conditions, broad range and rapid change of operating
conditions

= Reactions in slugs to conserve material and increase data throughput

= Generation of reaction mixtures by input liguid handling robot

= Analysis by HPLC (LC-MS)c RID, DAD
Pumps [0 ion ' andVWD

' Combined MATLAB , ' o g Sampler ; Detectors
| based Optimisation [} ™3
\ g and Control Software

xa Liquid Handler / #
Heated — Product Collector 'I

| Reagent Tubular ,_ .
Bottles Reactor



Nomadic Evolutionary Multiobjective Optimisation (NEMO)
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Advance in algorithmic optimisation of reactions

Process Materials Cost (USD$)

12
° = Pareto front
® Training (50 Experiments)
® Optimisation (20 Experiments)
10 4
8 -
..
6 -
..
©
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P
4
ey o
2 4 ) ‘ (%)
" o
@
° 5 ® o o °
1 = ® —tt o oo 9%
0 R L
0 10 20 30 40 50

Automated Optimisation
Step 2 Yield vs. Process Materials Cost

Step 2 Yield (%)

NEMO improves search for optimal conditions in
multi-objective optimisation



1. Input: Query reaction
SMILES (reactants, reagents,
solvents, main products) and
conditions (catalyst,
temperature, etc.)

2. Carrier fragment
identification (expand
around functional group to
include more context)

3. Fragment database search
for analogue compounds
(compounds containing
carrier fragments)

4. Reaxys database search for
analogue reactions
(Reactions containing
analogue compounds)

|

I. Data mining

Adarsh Arun

;

5. Reaction preprocessing,
cleaning and filtering

6. Reaction structure
completion and filtering

7. Atom-atom mapping and
filtering

8. Reaction center extraction
and filtering

Prediction of reaction impurities in chemical reactions

Il. Data processing

;

9. Template generation

10. Template application and
filtering (Impurity
generation)

11. Impurity cleaning and
filtering

lll. Impurity prediction

v

12. Morgan fingerprint
similarity (relevance)
calculations

13. Reaction condition
(process, catalyst,
temperature) filtering

14. Final impurity reaction list
ranked by maximum
relevance and number of hits

IV. Impurity ranking



Prediction of reaction impurities in chemical reactions

(a)

NH,
o
HO

SMILES : Nc1cce(O)ccet

Query reaction (user input)
H
N

)CJ)\Oj\—PHO/@\g/+)OJ\OH

CC(=0)OC(C)=0 >> CC(=0)Ncicce(O)eel . CC(=0)0

(b)

HO

SMILES : Nc1cec(O)ec

AN > Y

Main product

H
N 0
\g/ ' )J\OH

CC(=0)OC(C)=0 >> CC(=0)Ncicce(O)eel . CC(=0)0

Max relevance: 1.0 (570100)
Number of hits: 12180

Temperature range: 1.0 - 64.0 °C




(c)

(1) /©/NH2 .
HO

SMILES : Nc1cce(O)eet

SMILES : CC(=O)Nc1cce(O)cel .

Impurities

'S NP "Sh

Impurity

CC(=0)OC(C)=0 >> CC(=0)Ocicce(N)cct

Number of hits: 830

Max relevance: 0.91 (2380306)

Temperature range: 21.0 - 125.0 °C

0

-

Impurity

CC(=0)0

Impurity

o]

Hon

Impurity

CC(=0)0OC(C)=0 >> CC(=0O)Nc1ccc(OC(C)=0)cc1 . CC(=0)O

Max relevance: 0.87 (2380306)

Number of hits: 830

Temperature range: 20.0 - 127.

0°C

A. Arun, Z. Guo, S. Sung, A.A. Lapkin, Reaction
Impurity Prediction using a Data Mining Approach.
Chemistry Methods, 3 (2023) e2022000062.



Ongoing PIPS projects hosted by CARES

T1: From Digital Twins to Real Time Al-supported Plant Operation
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Ongoing PIPS projects hosted by CARES

T2: Automated Evaluation of Environmental Impacts of Pharma Manufacturing Processes

industrial and literature process data

n-g

mixtures
composition features of
technologies used

A\ 4

computable or

searchable generic models
properties for unit
operations

* technology types

* emissions as a function of inputs

* selection of technology as a function of composition
* typical unit operations

* scale dependencies

* additional chemical inputs

Hybrid
predictive

model

Datamining:
Species = Reactions = Conditions = Inventories

Sources:

* Reaxys

* Industry

* Environmental Genome

constraints and estimates based on mechanistic models: more data



Acknowledgements

Public Funding

UKRI, ERDF, NRF Singapore, PIPS(ingapore)

Industrial Funding

BASF, Pfizer, GSK, MSD, Syngenta, Astex, Elsevier, UCB Pharma, CDI Pte Ltd

Academic Collaborations

Markus Kraft, Leroy Cronin, Jonathan Goodman, Gabor Csanyi, Pietro Lio, Lucy
Colwell, Matthew Gaunt, Ning YAN, Hua Chun ZENG, Saif Khan, Wen LIU, Tej

Choksi, Samir Mushrif

“:CD
28, Synlech
e »

Chemical
Data
Intelligence

Automated Chemical Synthesis

DMT

Innovation Centre
in Digital Molecular
Technologies

Spin-out company offering consultancy and developing a new
product
(cdi-sg.com)

Centre for Doctoral Training @ University of Cambridge
(syntechcdt.com)

Innovation Centre to work with SMEs hosted by the
University of Cambridge
(idmt.online)

Early career researchers
Dr Zhen Guo

Dr Simon Sung

Dr Mohammed Jeraal
Dr Dogancan Karan
Dr Buoying Chen

Dr Magda Barecka

Dr Shuyuan Zhang

Dr Jiyizhe Zhang

Kobi Felton

Adarsh Arun

Jiaru Bai (MK)

Sustainable
@ Reaction
Engineering


SynTech%20copy.pptx

