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Generic Challenges 
of Process Development in Pharma

o Synthesis of an active pharmaceutical ingredient (API) is 
typically a multi-step sequence of synthesis and purification 
tasks.

o There are different options of how to build the required 
molecule (different synthetic paths). 

o There is a large number of combinations of possible reagents 
and reaction conditions.

An example of possible chemical routes from limonene (a bio-
waste based starting molecule) to paracetamol. In total there are 
458 routes involving 132 chemical species. Each reaction (arrow) 
will have a set of optimal reaction conditions and many of the 
reactions must be followed by product separation (not shown).



Generic Challenges 
of Process Development in Pharma

o How to efficiently develop a single step 
(reaction or separation)?

o How to efficiently design the complete sequence of steps?

• Do we know all the unknowns about our reaction system?

• Could we predict / calculate reaction outcome (what is being formed) and reaction 
conditions?

• Is it possible to generate required data using minimum time and quantities of 
reactants/reagents?

• Can we calculate or efficiently measure all required physical properties to evaluate 
separation strategy computationally?

• How to efficiently enumerate all possible options for a multi-step synthesis?

• What is the most effective way of optimizing a multi-step synthesis?



PIPS projects hosted by CARES

Pharma Innovation Programme Singapore

The Pharma Innovation Programme Singapore (PIPS) is an 
industry-led platform which aims to synergistically and 
strategically bring together public sector research 
capabilities and domain expertise of the pharmaceutical 
industry to enhance the productivity and operational 
efficiency within Singapore’s pharmaceutical sector 
through leveraging novel manufacturing technologies and 
data analytics.

CARES PIPS-1 Projects (completed in 2022/2023)

C4: Development of Multi-Step Processes in Pharma
C12: Data-2-Knowledge in the Digital Manufacture of 
Pharmaceuticals
Pfizer-specific: 

CARES PIPS-2 Projects (started in 2023)

T1: From Digital Twins to Real Time AI-supported Plant 
Operations
T2: Automated Evaluation of Environmental Impacts of 
Pharma Manufacturing Processes



Li-Halogen exchange is a frequently used synthetic strategy despite well-known practical difficulties: 
• very high exotherm and reaction rate (requires cryogenic conditions);
• low solubilities – solids formation;
• high sensitivity to traces of water and oxygen;
• low tolerance to functional groups – formation of impurities.

Could we propose a robust procedure based on Li-halogen exchange and used at scale?

Efficient Development of a Single Reaction Step

Dr Dogancan Karan

Key Step Easy Step



Efficient Development of a Single Reaction Step

Drs Dogancan Karan & Guoying Chen

Main Impurity

Simplified reaction – focus on the most complex step of Li-halogen exchange.



Flow Chemistry for ‘Difficult’ Synthetic Procedures

Benefits of flow technology:

• Many options for mixing arrangement in flow.
• Excellent temperature control – high exchange area.
• Enclosed system for control of environment.
• Low hazard – small reaction volumes.
• High space-time-yield: no need for scale-up.

Drs Dogancan Karan & Guoying Chen



𝜌 𝒖 ∙ ∇ 𝒖 = ∇ ∙ −𝑝𝑰 + 𝑲 + 𝑭 𝜌∇ ∙ 𝒖 = 0 NSE for velocity field

𝜌𝐶𝑝𝒖 ∙ ∇𝑇 + ∇ ∙ 𝒒 = 𝑄 + 𝑄𝑡𝑒𝑑 𝒒 = −k∇T Heat transport at solid side

𝜌𝐶𝑝𝒖 ∙ ∇𝑇 + ∇ ∙ 𝒒 = 𝑄 + 𝑄𝑝 + 𝑄𝑣𝑑 𝒒 = −k∇T Heat transport at liquid side

o CFD simulations to ensure that cooling tube is long enough to 
reach the desired temperature.

o Scaled down, axisymmetric 2D geometry to save 
computational time.

o Highest flow speed (worst case scenario) is simulated.

Wall

Fluid

T = 243 K (t = 0)

U (m/s)T = 298 K (t = 0)

Solid = PFA (0.8 mm ID, 50 cm L), Fluid = THF

Rotation Axis

InletOutlet

Wall

Fluid

n-BuLi/THF cooling line

3 – 3.2 m tube length is enough to reach target temperature

Engineering a Good Experiment



Engineering a Good Experiment

o Sequence of events to collect a data point causes dispersion in multiple locations in the system

o Steady state time needs to be estimated from the theory of Residence Time Distribution (RTD)

o Dispersion regimes are identified from 𝑈𝑑𝑡/𝐷𝐴𝐵 vs 𝐿/𝑑𝑡 plot

o Taylor dispersion model is used for n-BuLi+THF and sample collection part

o Plug flow is assumed in reaction zone due to short 𝜏

o Predicted steady state with dispersion model is 50 – 100 % higher than plug flow
steady state time for 15 randomly generated samples

o Fluctuation in steady state samples (avg of 10 samples)

Sample I - 47.3 (± 3.8) % Yield, 19.5 (± 1.1) % Impurity

Sample II – 95.5 (± 0.5) % Yield, 4.7 (± 0.5) % Impurity



Reaction Development & Optimisation using Automated Experiments



An open-source solution

About

• A coding framework to simplify automation
• Providing a robust architecture and tools for implementing routines  

• Open-source Python
• Zero capital cost, and native nitration of many packages for ML & data-science

• Designed for experimentalists with novice coding experience
• Providing a gradual transition into coding expertise

• Agile principles
• Making modification and sharing a feature

7

https://pypi.org/project/flab/

migration of



Automation Workflow

1. Choose the devices you need, and load them into the automation 
framework

2. Program a task (or multiple tasks) in python with high-level commands
• i.e. “ device1.start()” or

“experiment.start(parameters)”

3. Construct AI “loops”

4. Run and stop task(s) as you need during an experiment

5. Increase in complexity as necessary

11Dr Nicholas Jose; CEO of Accelerated Materials Ltd



Multi-objective Bayesian Optimization: Yield (max) vs Impurity (min) as competing objectives

o TSEMO designed 34 experiments to establish the pareto plot

o Optimum operation range for max. yield

o 𝜏 = 0.185-0.230 s, T = -(30-23) ºC, n-BuLi = 1.03 – 1.08 Eq.

𝜏 (s) T (°C) n-BuLi (Eq) Yield (%) Imp (%)

0.191 -23.41 1.079 94.1 4.1

0.23 -30 1.047 93.3 3.4

0.185 -26 1.037 93.1 2.5

Top 3 best conditions for max yield

Generating Process Knowledge through ML-driven DoE

Reactor setup = 16 cm, 0.8mm ID PFA tubing



o TSEMO designed 28 experiments to establish the pareto plot

o Optimum operation range for max. yield

o 𝜏 = 0.185-0.266 s, T = -(30-23) ºC, n-BuLi = 1.0 – 1.005 Eq.

Top 3 best conditions for max yield

𝜏 (s) T (°C) n-BuLi (Eq) Yield (%) Imp (%)

0.24 -28.6 1.003 95.7 3.6

0.266 -23.5 1.005 95.6 3.3

0.19 -23.4 1.06 93.9 5.57

Generating Process Knowledge through ML-driven DoE

Reactor setup = LTF HTM-ST + 4 cm, 0.8 mm ID PFA tubing

Multi-objective Bayesian Optimization: Yield (max) vs Impurity (min) as competing objectives



Tubular reactor vs Microfluidic chip reactor



Comparison between tubular system and chip system

Optimization 𝜏 (s) T (°C) n-BuLi (Eq) Yield (%) Imp (%)

Tube+12 Training 0.191 -23.41 1.079 94.1 4.1

Tube+3 Training 0.185 -16.3 1.065 93.8 4.8

Chip+12 Training 0.24 -28.6 1.003 95.7 3.6

o Chip system can achieve higher yield and lower impurity due to better mixing

o Tubular system requires more n-BuLi to achieve the max yield

Best performing condition of different optimization campaigns

Consistent Pareto efficient points for two optimization campaigns with tubular system

Slightly better pareto efficient points for chip system due to improve mixing

𝜏 (s) T (°C) n-BuLi (Eq) Yield (%) Imp (%)

Tube 0.185 -21 1.1 91.9 8

Chip 0.19 -23.4 1.06 93.9 5.57

o Tubular system requires more n-BuLi to compromise the yield for impurity

Tubular reactor vs Microfluidic chip reactor



C4 PIPS-1 Project: Development of Multi-Step Processes in Pharma

Project Objectives

• To develop a generic methodology for accelerated development of multi-step reaction-separation processes 
in the manufacture of pharmaceuticals.

• To demonstrate the methodology on specific industry-defined case studies.

• To identify critical technological challenges for implementation.

Efficient data generation in an automated laboratory

Drs Mohammed Jeraal, Simon Sung, Magda Barecka



Industrial Case Study



Machine-learning based design of experiments: TSEMO

Optimisation of STY (g/L/h) and E-Factor (Reaction Mass/Product Mass)

• Optimisation space same as original

• Same training experiments as 
original optimisation

• System performed 74 optimisation 
experiments.

Drs Mohammed Jeraal, Simon Sung, Magda Barecka

M.I. Jeraal, S. Sung, A.A. Lapkin, A Machine 
Learning-Enabled Autonomous Flow 
Chemistry Platform for Process Optimization 
of Multiple Reaction Metrics. Chemistry–
Methods, 2 (2021) 71-77

LRM
Stamp



User interface for working with automated experiments

Drs Mohammed Jeraal, Simon Sung, Magda Barecka



Components:
 Flow chemistry experiment – precise control of conditions, broad range and rapid change of operating 

conditions
 Reactions in slugs to conserve material and increase data throughput
 Generation of reaction mixtures by input liquid handling robot
 Analysis by HPLC (LC-MS)c

A chemical robot = an automated Vapourtec flow reactor + Liquid Handler + HPLC



Mohammed Jeraal, Simon Sung



NEMO improves search for optimal conditions in 
multi-objective optimisation

Advance in algorithmic optimisation of reactions



Prediction of reaction impurities in chemical reactions

Adarsh Arun



Prediction of reaction impurities in chemical reactions



A. Arun, Z. Guo, S. Sung, A.A. Lapkin, Reaction 
Impurity Prediction using a Data Mining Approach. 
Chemistry Methods, 3 (2023) e2022000062.



Ongoing PIPS projects hosted by CARES

T1: From Digital Twins to Real Time AI-supported Plant Operation

CARES:
Alexei Lapkin (PI)
Markus Kraft

I2R A*STAR:
Lianlian Jiang



Ongoing PIPS projects hosted by CARES

T2: Automated Evaluation of Environmental Impacts of Pharma Manufacturing Processes

mixtures 
composition features of

technologies used

industrial and literature process data

computable or 
searchable 
properties

generic models 
for unit 
operations

constraints and estimates based on mechanistic models: more data

Hybrid 
predictive 

model

• technology types
• emissions as a function of inputs
• selection of technology as a function of composition
• typical unit operations
• scale dependencies
• additional chemical inputs

Datamining:
Species à Reactions à Conditions à Inventories

Sources: 
• Reaxys
• Industry
• Environmental Genome
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